

The Australian Institute of Nuclear Science and Engineering

ANSTO RESEARCH CAPABILITIES AND FACILITIES GUIDE

This document outlines all of ANSTO's Research Capabilities and relevant ANSTO contact scientists that you are able to select as part of your Postgraduate Research Award application, and these capabilities are linked with the ANSTO Research Portal. Please ensure that you contact the relevant ANSTO scientist for advice prior to submitting your application.

Under the following clusters, you will find the individual capabilities, contact scientists, associated capability groups as well as facilities, if applicable.

Australian Synchrotron

The <u>Australian Synchrotron</u> produces powerful beams of light that can be used at individual experimental facilities, known as beamlines, to examine the atomic and molecular detail of a wide range of materials from health and medical, food, environment, biotechnology, nanotechnology, energy, mining, agriculture, advanced materials and archaeological research. Compared to traditional laboratory tools, the results from synchrotron analyses are exceptional in terms of accuracy, quality, robustness, level of detail and speed of data acquisition.

PLEASE NOTE: For Applicants seeking to use Australian Synchrotron Facilities: Students will only be eligible for the 2022 PGRA round if they can demonstrate a tangible, promising, realistic plan to access <u>merit-based beamtime</u> at the Australian Synchrotron. Options are: (a) recent successful beamtime application with beamtime scheduled in the forthcoming months, (b) beamtime applications submitted and presently in review, or (c) beamtime application signed off by your cosupervisor to be submitted in the proposal round. Please see the <u>Australian Synchrotron websites</u> for access guidelines."

For detailed information on the capabilities of individual beamlines, please see the links below:

Beamline	ANSTO Contacts
Imaging and Medical Beamline (IMBL)	IMBL Team
X-ray Fluorescence Microscopy (XFM)	XFM Team
Macromolecular and Micro Crystallography (MX1 and MX2)	MX1 and MX2 Team
Terahertz/Far-Infrared (THz/Far-IR)	THz/Far-IR Team
Infra-red Microscopy (IRM)	IRM Team
Soft X-ray Spectroscopy (SXR)	SXR Team
Small and Wide Angle X-ray Scattering (SAXS/WAXS)	SAXS / WAXS Team
X-ray Absorption Spectroscopy (XAS)	XAS Team
Powder Diffraction	Powder Diffraction Team

Australian Centre for Neutron Scattering

Neutron scattering covers an extremely wide range of disciplines: from fundamental physics, through chemistry, materials, and biology, right through to interdisciplinary areas such as engineering and archaeology.

Science at the <u>Australian Centre for Neutron Scattering</u> covers many of these areas, usually in collaboration with other groups, with our main focus being on the strongholds of neutron scattering: crystallography, soft condensed matter, solid-state physics, physical chemistry and, increasingly, biology.

<u>Beamline</u>	ANSTO Contacts
Echidna High-Resolution Powder Diffractometer	Echidna Team
Wombat High-Intensity Powder Diffractometer	Wombat Team
Koala Laue Diffractometer	Koala Team
Kowari Strain Scanner	Kowari Team
<u>Platypus Neutron Reflectometer</u> (with horizontal sample)	Platypus Team
Quokka Small-Angle Neutron Scattering	Quokka Team
Taipan Thermal Neutron 3-Axis Spectrometer	<u>Taipan Team</u>
Kookaburra Ultra Small-Angle Neutron Scattering	Kookaburra Team
Pelican Time-of-Flight Spectrometer	Pelican Team
Dingo Neutron Radiography/Imaging/Tomography	<u>Dingo Team</u>
Sika Cold Neutron 3-Axis Spectrometer	Sika Team
Bilby Small-Angle Neutron Scattering Instrument	Bilby Team
Emu High-Resolution Backscattering Spectrometer	Emu Team
Joey Neutron Laue Camera for single-crystal alignment	Joey Team
Spatz neutron reflectometer (with vertical sample)	Spatz Team
SAXS Instrument	<u>Dr Robert Knott</u>
X-ray Reflectometer	Platypus Team
Physical Properties Measurement System	<u>Dr Max Avdeev</u>

Centre for Accelerator Science (CAS)

The <u>Centre for Accelerator Science</u> (CAS) provides users with access to a suite of tools in one location that can be used across:

- isotopic dating
- air pollution
- climate science
- modification and characterisation of materials
- radiation damage studies
- forensic science
- nuclear detector characterisation
- microbiological and life science studies.

CAS provides two main capabilities:

- accelerator mass spectrometry (AMS)
- ion beam analysis (IBA).

Capability	ANSTO Contacts
Radiocarbon dating	Dr. Vladimir Levchenko, Alan Williams, Dr Geraldine Jacobsen, Dr Quan Hua, Andrew Jenkinson, Dr. Andrew Smith, Dr David Fink
Actinide and heavy ion isotopic analysis	<u>Dr Michael Hotchkis</u>
Cosmogenic isotope dating	Dr Klaus Wilcken, Dr David Fink, Dr Toshiyuki Fujioka, Dr. Andrew Smith,
Surface Engineering, Characterisation & Modification	<u>Prof Mihail Ionescu</u>
Bulk Sample Characterisation & Surface analysis	<u>Dr Armand Atanacio</u>
Aerosol Measurement & Fine Particle Characterisation	Prof David Cohen, Dr Armand Atanacio

Isotope Tracing in Natural Systems

<u>Isotope Tracing in Natural Systems</u> (ITNS) is a user focused facility providing a range of radioanalytical, isotopic and elemental analytical techniques, measurements and expertise for environmental studies.

The facility undertakes a broad range of analyses for research and industry. The ITNS team can provide customized services to suit the particular requirements of each client.

Capability	ANSTO Contacts
Tritium in surface / groundwaters	Robert Chisari
Stable isotope ratios of carbon, nitrogen, oxygen, hydrogen	Robert Chisari
Movement of fluids, particulates and contaminants in aquatic and terrestrial environments	<u>Dr Catherine Hughes</u>
Dating of sediment cores using Lead-210	Atun Zawadzki
Radiograph and XRF scans (ITRAX)	Patricia Gadd
Grain size distribution determination	Atun Zawadzki
Atmospheric & soil radon	<u>Dr Alastair Williams</u>
Elemental and trace metal analysis	Henri Wong
Laser ablation – ICPs	Henri Wong
Environmental radioactivity measurements (U, Th, Ra radionuclides etc. by alpha and gamma spectrometry).	Atun Zawadzki
Environmental radioactivity measurements (tritium and radon)	Robert Chisari

National Deuteration Facility

The <u>National Deuteration Facility</u> (NDF) offers the facilities, staff and expertise to produce molecules in which all or part of the molecular hydrogen is in the form of deuterium (2H or D). This enables complex investigations of the relationship between the structure of molecules and their function using neutron scattering, Nuclear Magnetic Resonance and other types of spectroscopy.

The NDF is a unique facility offering molecular deuteration using both *in vivo* biodeuteration or chemical deuteration techniques. It produces deuterated proteins, biopolymers, nucleic acids and synthesised small organic molecules such as lipids, phospholipids, sugars, surfactants, aliphatic hydrocarbons and aromatic, heterocyclic compounds. Double and triple labelling of proteins with both deuterium and the stable isotopes carbon-13 and/or nitrogen-15, are also available.

The nationally recognised facility is NCRIS funded and the only one of its kind in the Southern Hemisphere.

Capability	ANSTO Contacts
Biological deuteration	Prof Peter Holden, Karyn Wilde, Dr Anthony Duff, Dr Agata Rekas, Dr Robert Russell, Dr Natalia Davydova
Chemical deuteration	<u>Dr Tamim Darwish</u> , <u>Dr Anwen Krause-Heuer</u> , <u>Dr Nageshwar Rao</u> <u>Yepuri</u> , <u>Dr James Howard</u> , <u>Marina Cagnes</u> , <u>Dr Rhys Murphy</u> , <u>Michael Moir</u>

Nuclear Materials Development and Characterisation

ANSTO <u>Nuclear Materials Development and Characterisation</u> provides a unique set of capabilities to enable the synthesis, processing, engineering, testing and characterisation of the structure-property relationships of nuclear relevant materials and other advanced material systems.

Applications include advanced materials for fundamental science and industrially relevant applications and specialist radioactive handling capabilities.

Access to these capabilities may be limited to work which includes ANSTO research: please contact the user officer with your enquiry.

Capability	ANSTO Contacts
Materials testing	ANSTO User Office
Microscopy	ANSTO User Office
Metallography	ANSTO User Office
Inactive chemistry and characterisation	ANSTO User Office

Nuclear stewardship

<u>Nuclear Stewardship</u> maintains national capabilities that support industry, government and scientific users. Capabilities include radionuclide metrology, ionising radiation detection and measurement, radioanalytical chemistry and nuclear forensics.

Capability	ANSTO Contacts
Nuclear and ionising radiation detection and dosimetry ANSTO User Office	
Radioanalytical Chemistry	ANSTO User Office

Radiobiology and bioimaging

ANSTO's <u>radiobiology and bioimaging</u> capabilities specialise in the quantification of radiation in living systems.

Our diverse technical approach allows us to extract a comprehensive picture of the biology being investigated using complementary *in vitro*, *ex vivo*, *in vivo*, and in silico methodologies.

Capability	ANSTO Contacts
Radiobiology	ANSTO User Office
In vivo imaging	ANSTO User Office
In vitro imaging	ANSTO User Office
Gamma irradiation	ANSTO User Office
Radiotracer characterisation	ANSTO User Office

Radioisotopes and Radiotracers

The <u>Radioisotope and radiotracing</u> capabilities provide a complete work flow to deliver radioisotopes, radiotracers and radiotracing techniques.

Radioisotope and radiotracing capabilities range from reactor and cyclotron irradiations, through separations, to radioisotope or radiotracer production and characterisation.

Neutron-activated isotopes in materials are used to determine the elemental composition of the sample matrix.

Capability	ANSTO Contacts
Radioisotope provision	<u>Dr Paul Pellegrini</u> , <u>Dr Ivan Greguric</u>
Radioisotope research and development	<u>Dr Paul Pellegrini</u> , <u>Dr Ivan Greguric</u>
Radiotracer development	<u>Dr Nigel Lengkeek, Dr Giancarlo Pascali, Dr Ivan Greguric</u>
Radiotracer production	<u>Dr Tien Pham, Dr Nigel Lengkeek, Dr Ivan Greguric</u>
Radiochemistry automation	<u>Dr Gary Perkins</u> , <u>Dr Ivan Greguric</u>
Radioanalytical measurement	<u>Dr Ivan Greguric</u>
Elemental analysis	Attila Stopic
Neutron irradiation	Attila Stopic