WOMBAT
High-intensity powder diffractometer

Wombat is the most powerful high-intensity powder diffractometer in the world. It has the power to detect a million neutrons a second and to produce data on the structure of materials in a matter of milliseconds.

What makes Wombat special?
- Able to refine crystal structures quickly for phase transitions, chemical reactions and kinetic studies with rapid real time measurements (down to 30 µs).
- Able to analyse very small samples (approx. 10 mg).
- Able to analyse samples in complex sample environments, e.g. in pressure cells.

Applications:
Wombat can be used to study a range of materials including, novel hydrogen-storage materials for clean energy storage of the future, molecules for drug-delivery systems, negative-thermal-expansion materials (materials that contract upon heating) and materials for fusion reactors.

The properties of a material are linked to its atomic structure, which can be influenced by its environment. The effects of temperature, pressure, applied fields (magnetic or electric) on the atomic structure can affect the material's properties and can be measured by Wombat.

For example:
- Phase transitions – by varying one or more of the temperature, applied magnetic/electric fields, or applied pressure, the properties in a material can be created or destroyed.
- Material formation – many materials undergo one or more chemical reactions as a function of time as they are formed e.g. setting of cement.
- Cyclic variations – materials periodically exposed to applied fields resulting in changes to the atomic structure.
- In situ studies to observe chemical reactions and other dynamic phenomena as they occur.

Instrument specifications:

Wombat is located on the thermal neutron guide TG1

Wombat was built as a flexible modular instrument which can exploit the advantages of:
- focussing neutron optics in the monochromator system over a wide range of incident wavelengths
- a large solid angle detector with position sensitive detection capabilities
- an advanced data-acquisition electronics system
- an optional radial collimator for background reduction

Wavelength ranges
- 0.9 - 2.4 Å (Ge monochromator)
- 2.4 - 5.8 Å (PG monochromator with Be filter for >4 Å)

Resolution
- \(\Delta d/d > 2 \times 10^{-4}\)

Beam size
- max. 20 mm (wide) × 60 mm (high)

Sample weight
- ~10 mg to 10 g

Typical sample size
- 1 cm³

1s acquisition for 10 mm³ (15 min for 1 mm³) in one shot irreversibility

30 µs acquisition in stroboscopic mode (reversible experiments)

Estimated flux at sample position >10¹⁰ n cm⁻² s⁻¹

Detector area
- continuous detection over 120° x 200 mm high

For more information contact:
Dr Andrew Studer: +61 2 9717 3602
andrew.studer@ansto.gov.au
Dr Margaret Elcombe: +61 2 9717 3611
margaret.elcombe@ansto.gov.au
Dr Vanessa Peterson: +61 2 9717 9401
vanessa.peterson@ansto.gov.au

Case Study 1: In situ chemical physics
Recently, a new class of porous materials has been developed in which the structure (and properties) can be changed through the absorption of other molecules, called 'guests'.

The way in which a change is applied can also affect structure. Recent research on a porous framework material indicates a structural change dependent on the rate of guest sorption. Wombat will be able to uncover the mechanisms for such perturbations in structure.

Case Study 2: Piezoelectric materials
Ceramic lead zirconate titanate (PZT) is a very popular material for electromechanical transducer applications due to its large piezoelectric response and low cost. Devices such as ultrasound generators, hydrophones, high-voltage generators, impact sensors, and micro-positioning systems are just a few which take advantage of the exceptional properties of PZT. There are a whole range of piezoelectric materials based on the PZT structure, with the potential for applications to be explored.

Wombat will be used to perform rapid stroboscopic measurements to determine how these materials change structure with the application of an electric field, combined with longer duration measurements to study fatigue effects over time which can lead to device failure.